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Motivation

•  Multidisciplinary Design Optimization with
   high fidelity (nonlinear) PDE analyses
   •  Loosely coupled discipline interactions
    •  Use validated legacy codes
     •  Minimize implementation issues  

•  Reduce computation cost from conventional 
   optimization
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Conventional Approach
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Optimization Challenges

•  Why SASDO?
    • Minimize modifications to discipline analysis codes
         • Reduce the cost incurred by well-converged, iterative function 
         and sensitivity analyses at non-optimal points in design space

•  How SASDO?
      •  Interleaf optimization updates with iterative discipline and system analyses
      •  Require better convergence for function and sensitivity analyses 
         as optimization progresses
                 
•  Past SAADO 

•  Present 3D SASDO goals
    • Structural design variables added
      • Results which agree with conventional optimization
      • Computational cost less than conventional optimization
          

• Demonstrated for 1D, 2D, and 3D aerodynamic optimization (single discipline)
• Demonstrated for 3D flexible wing shape optimization (two disciplines)



               

SASDO Approach

min F (Q,u,X, 
  Q,u

β)

subject to constraints
gi(Q,u,X, β ) ≤0, i=1,2,... m
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SASDO Approach

   Partial convergence implies:
         •  Approximate functions (state) and gradients (sensitivities)
         
         •  Infeasibility in early design steps
         
         
         •  Contribution to reduction of design variable domain
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Process Implementation
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Process Implementation
Code Descriptions

RAPID          Surface geometry generation
                     Rapid Aircraft Parameterization in Design 

Code Description

CSCMDO     Volume mesh generation
                     Transfinite interpolation of deformations
 
CFL3D         General structured mesh Euler or 
                     Navier-Stokes flow analysis; 
                     Euler used in this study 

                      Finite Element Method linear structural analysis 

DOT             Sequential Quadratic Programming (SQP), 
                     Vanderplaats R&D, Inc.

                     Sensitivity derivatives obtained by Automatic Differentiation 
                     of Disciplinary Analysis Codes

FEM



Process Implementation
Computational Meshes

CFD mesh
C-O topology
73x25x25 volume
49x25 on wing

FEM mesh
3251 elements:
   1110 truss
   2141 CST
583 nodes
 



        •  Two wing planform (i.e., aero shape and structural geometry)
        

    •  Eight design variables 
      

•  Four structural sizing
•  One aero section camber

Application Problems
M∞ = 0.8, α = 1°

•  Four design variables

  •  Three wing planform (i.e., aero shape and structural geometry)

•  Two structural sizing



8 DV: 
  4 DV+
  semispan, b 
  root camber, zr 
  

Application Problems
Wing Configuration and Parameterization

 
  tip chord, ct 
  tip setback, xt

zone 1 sizing, Γ1 
zone 2 sizing, Γ2 

zone 3 sizing, Γ3 
zone 4 sizing, Γ4 

ct
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cr = 1

xt

zr
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•  Objective function: negative lift to drag ratio, –L/D

•  Constraints:
          •  minimum payload:
          
          •  maximum compliance:                        p u.ds ≤ Pmax          

          •  maximum pitching moment:
 

•  Design variables: planform, section, and sizing
      

Application Problems
SASDO for a 3D Wing

                             CL* S * q∞ – W   ≥ Lmin

                      Cm ≤ Cmmax

∫∫ 

 yes•  minimum leading edge radius:



Four-Design-Variable Results
M∞ = 0.8, α = 1°
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Eight-Design-Variable Results
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Four-Design-Variable Results
Computation Cost
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Eight-Design-Variable Results
Computation Cost
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Conclusions

•  Initial 3D wing SASDO results obtained,         
    demonstrating feasibility for dual simultaneity

•  SASDO finds the same or similar local minimum as 
   conventional optimization technique

•  SASDO requires few modifications to the function and
   sensitivity analysis codes

•  SASDO can be computationally more efficient than
   conventional gradient-based optimization techniques

•  Gradient computation times dominate SASDO



Open Questions

•  Gradient cost
   • adjoint approach for loosely coupled analyses?
    • code (compiler) optimization for AD code?
     • other approximations or methods?

•  Optimizer control

•  Sensitivity analyses error control

http://fmad-www.larc.nasa.gov/mdob/MDOB



Process Implementation
Aerodynamics / Structures Coupling
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Process Implementation
Aerodynamics / Structures Derivative Coupling
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